Strong regularity of matrices in a discrete bounded bottleneck algebra
نویسندگان
چکیده
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملAn Algorithm for Checking Strong Regularity of Matrices in Bottleneck Algebras
Let (B, ≤) be a dense, linearly ordered set without maximum and minimum and (⊕, ⊗) = (max, min). An n × n matrix A = (a ij) over B is called (a) strongly regular if for some b the system A ⊗ x = b is uniquely solvable; (b) trapezoidal if the inequality a ii > i k=1 n l=k+1 a kl holds for all i = 1, .., n. We show that a square matrix is strongly regular if and only if it can be transformed to a...
متن کاملStrong Regularity of Parametric Interval Matrices
We define strong regularity of a parametric interval matrix and give conditions that characterize it. The new conditions give a better estimation for regularity of a parametric matrix than the conditions used so far. Verifiable sufficient regularity conditions are also presented for parametric matrices. The new sufficient conditions motivate a generalization of Rump’s parametric fixed-point ite...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(97)81115-9